Skip to content. | Skip to navigation

Vikaspedia

പങ്കുവയ്ക്കുക
Views
  • നില എഡിറ്റ്‌ ചെയുവാൻ വേണ്ടി തയ്യാ

കണക്കിലെ കളികള്‍

കൂടുതല്‍ വിവരങ്ങള്‍

 

നെഗറ്റീവ് സംഖ്യകളുടെ ഗണിതം എത്ര എളുപ്പം!

 

കൂട്ടുകാരേ,

പോസിറ്റീവും നെഗറ്റീവും സംഖ്യകള്‍ വെച്ചുള്ള കണക്കുകൂട്ടലുകള്‍ ചിലപ്പോള്‍ കൂട്ടുകാർക്കു പ്രയാസമായി തോന്നാറുണ്ടോ?

എന്താണ് -ve സംഖ്യകള്‍? നമുക്കൊരു ഉദാഹരണം എടുക്കാം. രാജു അച്ഛന്റെ കയ്യില് നിന്ന് പത്തു രൂപയും വാങ്ങി കടയില് പോകുന്നു.അഞ്ചു രൂപയ്ക്കു സാധനം വാങ്ങിയാല് രാജുവിന്റെ കയ്യില് എത്ര രൂപ ഉണ്ടാകും?

അഞ്ചു രൂപ, അല്ലേ?

ഇനി പത്തു രൂപയ്ക്കു സാധനം വാങ്ങിയാല് രാജുവിന്റെ കയ്യിലുള്ള രൂപ?

ഒന്നും ബാക്കി കാണില്ല. അഥവാ പൂജ്യം രൂപ.

ഇനി വാങ്ങാനുള്ള സാധനത്തിനു 15 രൂപ വിലയുണ്ടെങ്കിലോ?
കയ്യില്‍ ഒന്നുമില്ലെന്ന് മാത്രമല്ല, 5 രൂപ കുറവുമാണ്. അപ്പോള് രാജു എന്ത് ചെയ്യും? 5 രൂപ പിന്നീട് തരാം എന്ന് കടം പറയാം, എങ്കില്‍ രാജുവിന്റെ കയ്യിലുള്ള രൂപ എത്ര? അഞ്ചു രൂപ കടം. അതിനെ നമുക്ക് -5 എന്ന് പറയാം. ശരിയല്ലേ.
നെഗറ്റീവ് സംഖ്യകള്‍ കൊണ്ടുള്ള കൂട്ടലും കുറയ്ക്കലും

രാജു 50 രൂപയുമായി കടയില്‍ പോകുന്നു. 20 രൂപയ്ക്കു സാധനങ്ങള്‍ വാങ്ങി, ചില്ലറ ഇല്ലാത്തതിനാല്‍ ബാക്കി പണം പിന്നെ തരാം എന്ന് കടക്കാരന് പറഞ്ഞു. അടുത്ത കടയില് നിന്നും 25 രൂപയുടെ സാധനങ്ങളും മൂന്നാമതൊരു കടയില് നിന്ന് 15 രൂപയുടെ സാധനവും വാങ്ങിയാല്‍ രാജുവിന്റെ കയ്യില്‍ ബാക്കിയുള്ള പണം എത്രയാകും?

രണ്ടും മൂന്നും കടകളില്‍ 25 ഉം 15 ഉം കൊടുക്കാനുണ്ട് അഥവാ 40 കൊടുക്കാനുണ്ട്. അതില്‍ 30 ആദ്യ കടയില്‍ നിന്ന് കിട്ടാനുമുണ്ട്.

അങ്ങനെ എങ്കില്‍ ഇപ്പോള്‍ 10 രൂപ കടം ആയി. അല്ലേ?

അഥവാ ഇങ്ങനെ എഴുതാം +30+(-25)+(-15)=(-10) ശരിയല്ലേ?

നെഗറ്റീവു സംഖ്യകളെ പോസിറ്റീവ് സംഖ്യകളുമായി ഗുണിച്ചാല്‍

രാജു 10 രൂപയുമായി കടയില്‍ പോകുന്നു. 5 രൂപ വിലയുള്ള 3 പുസ്തകങ്ങള്‍ വാങ്ങിയാല്‍ 5 രൂപ കടം ആകും. അല്ലേ? ഇനി രണ്ടാമത്തെ കടയില്‍ നിന്നും 5 രൂപ വിലയുള്ള ഒരു പുസ്തകം വാങ്ങുന്നു എന്നും കരുതുക. ഇതുപോലെ മൂന്നാമത്തെ കടയില്‍ നിന്നും.
രാജുവിന്റെ കയ്യില്‍ ഇപ്പോഴുള്ള മൊത്തം പണംഎത്രയാണ്?
മൂന്നു സ്ഥലത്തും 5 രൂപ വീതം കടം. അഥവാ ആകെ 15 രൂപ കടം. നമുക്കതിനെ ഇങ്ങിനെ എഴുതാം (-5)+(-5)+(-5)=(-15)

ഒരേ സംഖ്യയെ ആവര്‍ത്തിച്ച് കൂട്ടുന്നതിനാണല്ലോ ഗുണനമെന്ന് പറയുന്നത്. അപ്പോള്‍ മുകളിലെ സമവാക്യത്തെ 3x(-5)=(-15) എന്നെഴുതാം.ശരിയല്ലേ?

ഇങ്ങിനെ 5 കടയില്‍, ഓരോ കടയിലും 10 രൂപ വെച്ച് കടമുണ്ടെങ്കില്‍ നമുക്ക് അതിനെ എങ്ങനെ കണക്കാക്കാം? 5x(-10)=(-50) അല്ലെ?

നെഗറ്റീവ് സംഖ്യയെ നെഗറ്റീവ് സംഖ്യ കൊണ്ട് ഗുണിച്ചാല്‍

നേരത്തെ പറഞ്ഞ കഥയില്‍, (അഥവാ രാജു 3 കടയിലും 5 രൂപ വെച്ച് കൊടുക്കാനുണ്ട്) ഇനി രാജു കടം വീട്ടുകയാണ്. രാജുവിന് അച്ഛന്‍ കടം വീട്ടാനുള്ള തുക കൊടുത്തു.

ഓരോ കടയിലും കയറി രാജു കൊടുക്കാനുള്ള പൈസ കൊടുക്കുന്നു. നമുക്കത് സമവാക്യങ്ങള്‍ ആയി എഴുതാം.

ആദ്യമുള്ള അവസ്ഥയില്‍

3x(-5)=(-15) അല്ലേ?

ആദ്യത്തെ കടയില് 5 രൂപ കൊടുത്തു. ഇപ്പോള്‍ കൊടുക്കാനുള്ള കടകളുടെ എണ്ണത്തില്‍ ഒന്ന് കുറവ് വരും, അല്ലേ? സമവാക്യം ഇങ്ങിനെ ആകും.

(3-1)x (-5)=-10

2x(-5)=(-10)

ഇനി രണ്ടാമത്തെ കടയില് 5 രൂപ കൊടുക്കുന്നു. അപ്പോള്‍

(2-1)x (-5)=(-5)

1x (-5)=(-5)

അതിനു ശേഷം മൂന്നാമത്തെ കടയില്‍ 5 രൂപ കൊടുത്തു. അതോടെ രാജുവിന്റെ കടം തീര്‍ന്നു, അല്ലേ?

സമവാക്യം ഇങ്ങനെ എഴുതാം.

(1-1)x -5= 0
0 x -5= -5

അന്നേരം രാജുവിന്റെ കൂട്ടുകാരന് വിളിച്ചു പറഞ്ഞു, 4, 5 നമ്പര്‍ കടകളില്‍ അവനും 5 രൂപ വീതം കടമുണ്ട് . അത് കൊടുത്തു വീട്ടാമോ എന്ന്. രാജു സമ്മതിച്ചു .

അങ്ങനെ രാജു 4, 5 കടകളില്‍ പൈസ കൊടുത്താല്‍ രാജുവിന്റെ കടയുമായി ബന്ധപ്പെട്ട കണക്കില്‍ എത്ര ബാക്കിയാകും? 10 രൂപ രാജുവിന് കൂട്ടുകാരനില്‍ നിന്ന് കിട്ടാനുണ്ട്. അഥവാ 5 കടയിലും തുക കൊടുത്തു കഴിയുമ്പോള്‍ -15 ല്‍ നിന്ന് +10 ആയി മാറുന്നു,

നമുക്ക് സമവാക്യങ്ങള്‍ എഴുതി നോക്കാം

4 ആം കടയില്‍ 5 രൂപ കൊടുക്കുമ്പോള്‍

ഓരോ കടയിലും കൊടുക്കുമ്പോള്‍ നമ്മള്‍ കടകളുടെ എണ്ണത്തില്‍ ഓരോന്ന് കുറവ് വരുത്തുകയായിരുന്നു.

അതിനാല്‍, (0-1) x (-5) = +5 (ഇപ്പോള്‍ കൂട്ടുകാരനില്‍ നിന്നും 5 രൂപ കിട്ടനാണുള്ളത്)

5 ആം കടയില്‍ 5 രൂപ കൊടുക്കുമ്പോള്‍  (-1-1) x (-5) = 10

(-2) x (-5) = 10

ഇപ്പോള്‍ -ve X -ve +ve ആയി മാറുന്നതിന്റെ യുക്തി കൂട്ടുകാര്‍ക്ക് പിടികിട്ടിയില്ലേ?

ഘടികാരവും സൂചികളും പിന്നെ കോണളവും!

 

സമയം ഒരു മണി അഞ്ച് മിനിട്ട്! ഇപ്പോള്‍ മണിക്കൂര്‍ സൂചിയും മിനിട്ട് സൂചിയും തമ്മില്‍ ഉണ്ടാക്കുന്ന കോണളവ് എത്രയാണെന്നു പറയാമോ?

ഏയ്! അങ്ങനെയൊരു കോണു തന്നെയില്ലല്ലോ. മിനിട്ട് സൂചിയും മണിക്കൂര്‍ സൂചിയും ഒന്നിനു മീതെ ഒന്നായി ഇരിക്കുകയല്ലേ എന്നു ചിന്തിക്കുന്നവരുമുണ്ടാകാം.

സമയം ഒരു മണിയാകുമ്പോള്‍, മണിക്കൂര്‍ സൂചി കൃത്യം ഒന്നിന് നേരേയായിരിക്കുമെന്ന് അറിയാമല്ലോ. എന്നാല്‍ സമയം ഒരു മണി അഞ്ച് മിനിട്ടാകുമ്പോള്‍ മണിക്കൂര്‍ സൂചി (അഞ്ചു മിനിട്ടിനനുസരിച്ച്) കുറച്ചു കൂടി നീങ്ങിയിരിക്കും!

അപ്പോള്‍ നമ്മുടെ ചോദ്യം, മിനിട്ട് സൂചി അഞ്ച് മിനിട്ട് പിന്നിടുമ്പോള്‍ മണിക്കൂര്‍ സൂചി എത്ര ഡിഗ്രി തിരിയും എന്നാക്കി മാറ്റാം.

മിനിട്ട് സൂചി 60 മിനിറ്റ് പിന്നിടുമ്പോള്‍ മണിക്കൂര്‍ സൂചി 30ഡിഗ്രി തിരിയുന്നു. (കാരണം, അടുത്തടുത്ത ഓരോ അക്കങ്ങളും ഘടികാരത്തിന്റെ കേന്ദ്രത്തില്‍ 30 ഡിഗ്രി കോണ്‍ ഉണ്ടാക്കുന്നു.)

അതായത് മിനിട്ട് സൂചി ഒരു മിനിട്ട് പിന്നിടുമ്പോള്‍ മണിക്കൂര്‍ സൂചി 0.5 ഡിഗ്രി (30/60) തിരിയുന്നു.

അതുകൊണ്ട് മിനിട്ട് സൂചി അഞ്ചു മിനിട്ട് പിന്നിടുമ്പോള്‍ മണിക്കൂറില്‍ 2.5 ഡിഗ്രി (5 x 0.5) തിരിയുന്നു എന്ന് കണക്കുകൂട്ടാം.

അപ്പോള്‍, സമയം ഒരു മണി അഞ്ചു മിനിട്ട് ആകുമ്പോള്‍ കോണളവ് 2.5 ഡിഗ്രി!

സ്റ്റേഡിയവും ചില കേന്ദ്ര ചിന്തകളും..(ഭാഗം 1)

 

തലസ്ഥാനത്തിലെ വൃത്താകൃതിയിലുള്ള സ്റ്റേഡിയം. മഴക്കെടുതിയില്‍ വീട് നഷ്ടപ്പെട്ടവര്‍ക്കെല്ലാം പുതിയ വീടിന്റെ താക്കോല്‍ ദാനം നിര്‍വ്വഹിക്കുന്നതിനായി അടുത്തയാഴ്ച്ച മുഖ്യമന്ത്രി ഇവിടെ വരുന്നു. പരിപാടിക്കായി സ്റ്റേഡിയം മുഴുവന്‍ തോരണം കൊണ്ട് അലങ്കരിക്കണം. സ്റ്റേഡിയത്തിനു നടുക്കൊരു കൊടിമരം നാട്ടി അതില്‍ നിന്നു വേണം തോരണം വലിച്ച് അലങ്കരിക്കാന്‍‍. കരാര്‍ ഏറ്റെടുത്തിരിക്കുന്ന രാമു ആശാനും മറ്റു തൊഴിലാളികള്‍ക്കും അങ്കലാപ്പായി. വൃത്താകൃതിയിലുള്ള സ്റ്റേഡിയത്തിന്റെ മധ്യം എങ്ങനെ കണ്ടു പിടിക്കാന്‍‍!

അത് രാമു ആശാന്റെ കഥ. ഒരു വൃത്തത്തിന്റെ കേന്ദ്രം എങ്ങനെയാണ് കണ്ടുപിടിക്കുന്നത്? ജ്യോമട്രിയെ വിളിക്കാം. ജ്യോമട്രി വന്നു പറഞ്ഞു: വൃത്തത്തിന്റെ ഏത് ഞാണുകളുടേയും ലംബസമഭാജി വൃത്തകേന്ദ്രത്തിലൂടെ കടന്നു പോകും.

എന്താണാപ്പറഞ്ഞതിനര്‍ത്ഥം? വൃത്തത്തിലെ ഏത് രണ്ട് ബിന്ദുക്കളും ചേര്‍ത്ത് ഒരു നേര്‍വര വരച്ചാല്‍ അതിനേയാണല്ലോ ഞാണ്‍ എന്നു പറയുന്നത്. അങ്ങനെയുള്ള ഏത് രേഖാഖണ്ഡത്തിന്റേയും ഒത്തനടുവിലായി ലംബമാ‍യി ഒരു വര വരച്ചാല്‍ അത് വൃത്തകേന്ദ്രത്തിലൂടെ കടന്നു പോകുമെന്ന്പച്ചനിറത്തിലും നീലനിറത്തിലും കാണുന്ന രേഖാഖണ്ഡങ്ങള്‍ ഞാണുകളാണ്. ചുവപ്പിലും വയലറ്റിലുമുള്ള ഡോട്ടഡ് വരകള്‍ അവയുടെ ലംബസമഭാജികളുമാണ്. ലംബസമഭാജികള്‍ കൂടിച്ചേരുന്ന സ്ഥലമാണ് വൃത്തകേന്ദ്രം. ലംബസമഭാജി വരക്കുന്നതെങ്ങനെയെന്ന് അടുത്ത പോസ്റ്റില്‍ പറയാം

മൂന്നു സംഖ്യകള്‍

 

അങ്ങനെയും മൂന്ന് എണ്ണല്‍ സംഖ്യകള്‍! ആ മൂന്നു സംഖ്യകളുടെ തുകയും ഗുണനഫലവുമെല്ലാം ഒരേ സംഖ്യ തന്നെ. ആ സംഖ്യകള്‍ ഏതാണെന്നറിയാമോ? അവയാണു് ഒന്നും രണ്ടും മൂന്നും. തുകയും ഗുണനഫലവുമെല്ലാം തുല്യം – ആറ്!

ദാസിന്റെ പച്ചക്കറിക്കട – ഒരു ചെറിയ ഗണിതപ്രശ്നം

പച്ചക്കറി വ്യാപാരിയായ ദാസിന്റെ കടയില്‍ നാല്പതു കിലോ തൂക്കമുള്ള ഒരു കട്ടിയുണ്ടായിരുന്നു. കരിങ്കല്ലില്‍ നിര്‍മ്മിച്ച ഈ കട്ടിയുപയോഗിച്ച് അദ്ദേഹം മരച്ചീനിയും മറ്റും മൊത്തമായി തൂക്കി വാങ്ങി ചില്ലറ കച്ചവടം നടത്തി ജീവിച്ചു പോരുന്നു. അങ്ങനെയിരിക്കെയാണ് ആ ദുരന്തമുണ്ടായത്. തൂക്കുന്നതിന്നിടയില്‍ നാല്പതു കിലോ കരിങ്കല്‍ക്കട്ടി നിലത്തു വീണ് നാലു കഷണമായി. ദാസ് സങ്കടത്തിലായി.

ദാസിന്റെ ഭാര്യ തൂക്ക കട്ടിയുടെ കഷണങ്ങള്‍ പരിശോധിച്ചു നോക്കിയപ്പോള്‍ അത്ഭുതം! ത്രാസിന്റെ ഇരുതട്ടുകളിലും കഷണങ്ങള്‍ മാറിയും തിരിഞ്ഞും പെറുക്കി വെച്ചാല്‍ ഒന്നു മുതല്‍ 40 വരെയുള്ള ഏതു തൂക്കവും (1കിലോ,2 കിലോ, 3കിലോ ……, 39 കിലോ, 40 കിലോ) ഒറ്റയടിക്ക് ഇപ്പോള്‍ തൂക്കിയെടുക്കാം. ദാസിനും ഭാര്യയ്ക്കും സന്തോഷത്തിന്നതിരില്ല.

പൊട്ടിയ നാലുകഷണങ്ങള്‍ക്കും എത്ര കിലോ വീതം ഭാരമുണ്ടെന്ന്
കൂട്ടുകാര്‍ക്കറിയാമോ? ഉത്തരത്തിനായി അങ്കിള്‍ കാത്തിരിക്കുന്നു…


    ഹാഷിം കുളം വികസിപ്പിക്കുന്നു.

ഹാഷിമിന് സമചതുരാകൃതിയിലുള്ള ഒരു കുളമുണ്ട്. കുളത്തിന്റെ നാലുമൂലകളിലും കായ്ച്ചു നില്‍ക്കുന്ന വലിയ നാലു് നാട്ടുമാവുകള്‍‍! ഹാഷിം വിവാഹം കഴിച്ചു മൂന്നു നാലു കുട്ടികളുമായി. കുടുംബാംഗങ്ങള്‍ക്കെല്ലാം കൂടി നീന്തിക്കുളിക്കാന്‍ ഇപ്പോള്‍ കുളത്തിന്റെ വലുപ്പം തികയുന്നില്ല എന്ന സ്ഥിതി. എന്താണ് പോംവഴി? വലുപ്പം ഇരട്ടിയാക്കണം. സമചതുരാകൃതിയോടു് ഹാഷിമിനു പ്രത്യേക കമ്പമുണ്ട്. നാട്ടുമാവുകളോടു് അതിലേറെയും. മരങ്ങള്‍ നിലനിര്‍ത്തിയും സമചതുരാകൃതി മാറ്റാതെയും കുളത്തിന്റെ വിസ്തീര്‍ണ്ണം ഇരട്ടിയാക്കാന്‍ കൂട്ടുകാര്‍ക്കു് സഹായിക്കാമോ?

ഉത്തരം ആലോചിച്ച് കണ്ടു പിടിക്കുക.

ഉത്തരം

ഉത്തരത്തിനു പിന്നിലെ ഗണിത വസ്തുത അറിയേണ്ടവര്‍ക്ക്.

നിലവിലെ അളവുകള്‍
കുളത്തിന്റെ ഒരു വശത്തിന്റെ നീളം a ആണെന്നിരിക്കട്ടെ.

കുളത്തിനു് ഇപ്പോഴുള്ള വിസ്തീര്‍ണ്ണം = a X a = a²

ഇരട്ടിയാക്കിയതിനു ശേഷമുള്ള അളവുകള്‍
ഇരട്ടിയാക്കിയാലുള്ള വിസ്തീര്‍ണ്ണം = 2 X a²
അപ്പോള്‍ ഒരു വശത്തിന്റെ നീളം = √(2 X a²) = √2 X a = √2a ——> (1)

ഒരുവശം √2a ആയ ഒരു സമചതുരമാണ് നമ്മുടെ ഉത്തരം. ഇതു കിട്ടാനുള്ള വഴിയെന്താണെന്നു് ആലോചിക്കുക.

ത്രികോണം BCD ഒരു മട്ടത്രികോണമാണു്.
CD = a (പാദം)
BD = a (ലംബം)

പൈതഗോറസ് സിദ്ധാന്തപ്രകാരം, കര്‍ണ്ണം = √(പാദം²+ലംബം²)
അതായതു്, BC = √(CD²+BD²)
BC = √(a²+a²) = √(2a²) = √2a

അതായത്, മഞ്ഞനിറത്തിലുള്ള സമചതുരത്തിന്റെ ഒരു വശം √2a ആണു്. അങ്ങനെ ഹാഷിം കുളം വലുതാക്കേണ്ടത്, മഞ്ഞനിറത്തില്‍ കാണിച്ചിരിക്കുന്ന സമചതുരത്തിന്റെ പ്ലാനില്‍‍!

കലണ്ടര്‍ മാജിക്ക്

 

ഇന്ന് കലണ്ടര്‍ കൊണ്ടൊരു മാജിക്ക് നടത്തി കൂട്ടുകാരുടെ മുന്നില്‍ വിലസാം.

കൂട്ടുകാരനെ ഒരു കലണ്ടറിന് അഭിമുഖമായി നിര്‍ത്തുക. നിങ്ങള്‍ കൂട്ടുകാരനഭിമുഖമായി കലണ്ടര്‍ കാണാനകാതെയും നില്‍ക്കുക. സുഹൃത്തിനോട് കലണ്ടറിലെ ഏതെങ്കിലും തുടര്‍ച്ചയായ മൂന്നു സംഖ്യകള്‍ മനസ്സില്‍ വിചാരിച്ച് അവയുടെ തുക കണ്ടുപിടിച്ച് ഉറക്കെ പറയാന്‍ ആവശ്യപ്പെടുക. അത്ഭുതം! സുഹൃത്ത് മനസ്സില്‍ കണ്ട മൂന്നു സംഖ്യകള്‍ നിങ്ങള്‍ പറയുന്നു!

വിദ്യ നിസ്സാരമാണ്. സുഹൃത്ത് പറഞ്ഞ തുകയെ 3 കൊണ്ട് മനസ്സില്‍ ഹരിക്കുക. ഹരണഫലമാണ് മൂന്നു സംഖ്യകളില്‍ രണ്ടാമത്തെ സംഖ്യ. ഇതില്‍ നിന്ന് ഒന്നു കുറച്ചാല്‍ ആദ്യത്തെ സംഖ്യയും ഒന്നു കൂട്ടിയാല്‍ മൂന്നാമത്തെ സംഖ്യയും ലഭിക്കാന്‍ പ്രയാസമില്ലല്ലോ!

ആള്‍ജിബ്രായെ വിളിക്കാം.
ആദ്യത്തെ സംഖ്യ A എന്നിരിക്കട്ടെ
അപ്പോള്‍ രണ്ടാമത്തെ സംഖ്യ A+1 ഉം
മൂന്നാമത്തെ സഖ്യ A+2 ഉം ആയിരിക്കുമല്ലോ!

മൂന്നു സഖ്യകളുടെ തുക = A + (A+1) + (A+2) = 3A + 3
ഈ തുകയെ 3 കൊണ്ട് ഹരിച്ചാല്‍ നമുക്ക് A+1 ലഭിക്കും. അതായത് നമ്മുടെ രണ്ടാമത്തെ സംഖ്യ!


ത്രികോണമിതിയളവുകള്‍ എളുപ്പത്തില്‍ ഓര്‍ത്തിരിക്കുന്ന സൂത്രവിദ്യ

ഗണിത പ്രശ്നങ്ങള്‍ക്ക് ഉത്തരം കണ്ടെത്തേണ്ടി വരുമ്പോള്‍ പലപ്പോഴും അത്യാവശ്യമായി വരുന്ന ഒന്നാണ് 0, 30, 45, 60, 90 എന്നിവയുടെ ത്രികോണമിതിയളവുകള്‍. ഹൈസ്കൂള്‍ വിദ്യാര്‍ത്ഥികള്‍ക്ക് ഇതു പലപ്പോഴും കാണാതെ പഠിക്കേണ്ടതായും വരാറുണ്ട്. ഇത് ഓര്‍ത്തിരിക്കാനുള്ള ഒരു രസികന്‍ വിദ്യ പഠിച്ചുകൊള്ളൂ.

0 (പൂജ്യം)
1/4 (കാല്‍)
1/2 (അര)
3/4 (മുക്കാല്‍)
1(ഒന്ന്)

ഇവയുടെ വര്‍ഗ്ഗമൂലങ്ങള്‍ കണ്ടുപിടിച്ച് താഴെത്താഴെയെഴുതുക. അതായത്,

0
1/2
1/√2
√3/2
1

ഇവ യഥാക്രമം SIN(0), SIN(30), SIN(45), SIN(60), SIN(90) ആയിരിക്കും.
COS ഇതിന്റെ വിപരീതദിശയിലായിരിക്കും. മറ്റൊരുതരത്തില്‍ പറഞ്ഞാല്‍, മുകളില്‍ പറഞ്ഞ മൂല്യങ്ങള്‍ COS(90), COS(60), COS(45), COS(30), COS(0) എന്നിവയും ആയിരിക്കും.

വൃത്തിയായി ഒരു ദീര്‍ഘ വൃത്തം എങ്ങനെ വരക്കാം?

പല അവസരങ്ങളിലും നമുക്കു വൃത്തങ്ങള്‍ വരക്കേണ്ട ആവശ്യം വരാറുണ്ട്. അപ്പോഴൊക്കെ നാം കോമ്പസസിനെ ആശ്രയിക്കുകയാണ് ചെയ്യാറുള്ളത്. മൈദാനത്തൊ മറ്റോ അല്‍പ്പം വലിയ വൃത്തമാണ് വേണ്ടതെങ്കില്‍, നടുക്ക് ഒരു കുറ്റിയടിച്ച് അതില്‍ വള്ളികെട്ടി ചുറ്റും വരക്കുകയും ചെയ്യാം. പക്ഷേ ഒരു ദീര്‍ഘവൃത്തം വൃത്തിയായി എങ്ങനെ വരക്കാം?

ഈ സൂത്രവിദ്യ പറയുന്നതിനു മുന്‍പായി ദീര്‍ഘവൃത്തത്തെപ്പറ്റി നമുക്കു കുറച്ചു മനസ്സിലാക്കാം. വൃത്തത്തിന് ഒരു കേന്ദ്രമാണെങ്കില്‍ ദീര്‍ഘവൃത്തങ്ങള്‍ക്ക് രണ്ടു പ്രധാന കേന്ദ്രങ്ങളാണുള്ളത്! അവയെ ഫോക്കസുകള്‍ എന്നാണറിയപ്പെടുന്നത്. ദീര്‍ഘവൃത്തത്തിലെ ഏതൊരു ബിന്ദു പരിഗണിച്ചാലും രണ്ടു ഫോക്കസുകളില്‍ നിന്നും ഈ ബിന്ദുവിലേക്കുള്ള ദൂരങ്ങളുടെ തുക എവിടെയും തുല്യമായിരിക്കും.

ചിത്രം ശ്രദ്ധിക്കുക. ഇവിടെ x1 + x2 ദീര്‍ഘവൃത്തത്തിന്റെ എല്ലാ ബിന്ദുവിലും തുല്യമായിരിക്കും.
മേല്‍പ്പറഞ്ഞ നിയമമനുസരിച്ച് ഒരു തടിയിലോ മറ്റോ നിശ്ചിത ദൂരത്തില്‍ രണ്ടാണികള്‍ അടിക്കുക. അതിനുശേഷം ഒരു നൂലുപയോഗിച്ച് കുറച്ച് അയച്ച് ആണികളെ പരസ്പരം ബന്ധിപ്പിക്കുക. ഇനി ഒരു പെന്‍സിലെടുത്ത് നൂലില്‍ കുടുക്കി ചിത്രത്തില്‍ കാണുന്നത് പോലെ ആഞ്ഞു വലിച്ച് ചുറ്റും വരച്ചു നോക്കൂ. കൂട്ടുകാരുടെ ദീര്‍ഘവൃത്തം സൃഷ്ടിക്കപ്പെടുകയായി!ഇവിടെ ആണികള്‍ ഫോക്കസിന്റെ സ്ഥാനത്താണ് നില്‍ക്കുന്നത്. രണ്ടാണികള്‍ക്കിടയിലുള്ള നൂലിന്റെ നീളം x1+x2 ആയിരിക്കുകയും ചെയ്യും.

കടപ്പാട് .സയന്‍സ് അങ്കിള്‍

3.38235294118
നിങ്ങളുടെ നിര്‍ദ്ദേശം പോസ്റ്റ് ചെയ്യുക

(നിങ്ങള്‍ക്ക് അന്വേഷണങ്ങള്‍ പോസ്റ്റ് ചെയ്യുകയോ ചര്‍ച്ച ചെയ്യുകയോ ചേര്‍ക്കുകയോ ചെയ്യാം)

Enter the word
നവിഗറ്റിഒൻ
Back to top